Abstract
In this work, experimental measurements and theoretical validation are adopted to examine the tensile and flexural behaviors of titanium-based carbon/basalt fiber metal laminates under various hybridization ratios and stacking sequences. Firstly, the mechanical response and damage patterns of fiber metal laminates (FMLs) subjected to different tensile and flexural loads have been explored. By observing the fracture surfaces of FMLs with various hybridization ratios and stacking sequences, scanning electron microscopy (SEM) has been used to identify the related microscopic damage patterns. The principal damage mechanism were attributed to fiber/matrix debonding, matrix microcrack, fiber pull-out, and delamination. Subsequently, to analyze the discreteness of experimental results and evaluate the theoretical flexural strength of FMLs under different conditions, the two-parameter Weibull statistics model for engineering application of FMLs was established. These results indicate that the tensile and flexural strength of FMLs can be improved by altering the hybridization ratios and stacking sequences. The thorough understanding of the mechanical behavior and failure mechanism of FMLs under various hybridization conditions can provide the basis for the design and utilization of FMLs structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.