Abstract

Slow strain rate tests using smooth specimens of two types of steels, low alloy steel JIS-SCM435 and carbon steel JIS-SM490B, were carried out in nitrogen gas and hydrogen gas under a pressure of 115 MPa at three different temperatures: 233 K, room temperature and 393 K. In nitrogen gas, these steels exhibited the so-called cup-and-cone fracture at every temperature. On the other hand, in hydrogen gas, in both steels a number of cracks initiated on the specimen surface and coalesced with each other at every temperature, which led to a marked reduction in ductility. Nonetheless, even in hydrogen gas, JIS-SCM435 exhibited a certain reduction of area after the stress-displacement curve reached the tensile strength (TS), whereas JIS-SM490B exhibited little, if any, necking in hydrogen gas. In addition, tension-compression fatigue testing at room temperature revealed that in both steels there was no noticeable difference between the fatigue strengths in air and 115MPa hydrogen gas, especially in a relatively long life regime. Considering that there was little or no hydrogen-induced degradation in either TS or fatigue strength in JIS-SCM435, it is suggested that JIS-SCM435 is eligible for fatigue limit design on the basis of a safety factor (i.e. TS divided by the allowable design stress) for mechanical components used in hydrogen gas up to 115 MPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call