Abstract

The thermomechanical (dilatometric, tensile, and fatigue) behavior of Al-based metal matrix composites (MMCs) is investigated. These composites are reinforced by quasi-unidirectional (quasi-UD) woven fabric preforms with 90 pct of continuous fibers in the longitudinal direction and 10 pct in the transverse direction. The two composite systems investigated feature a highly ductile matrix (AU2: Al-2Cu wt pct) with a strongly bonded fiber-matrix interface (N610 alumina fibers) and an alloyed, high-strength matrix (A357: Al-7Si-0.6Mg wt pct) with a weak fiber-matrix interface (K139 carbon fibers). Microstructural investigation of the tested specimens has permitted identification of the specific characteristics of these composites: undulation of the longitudinal bundles, presence of the straight transverse bundles, interply shearing, and role of brittle phases. Moreover, simple semiquantitative models (e.g., interply shearing) have enabled explanation of the specific mechanical behavior of these quasi-UD composites, which exhibit high tensile and fatigue strengths, as compared with the corresponding pure UD composites. Knowledge of the specific characteristics and mechanical behavior of these quasi-UD composites will facilitate the further investigation of the (0, ±45, 90 deg) quasi-UD laminates (Part II). At a more theoretical viewpoint, the specific geometry and behavior of these quasi-UD composites allows exacerbation of fatigue mechanisms, even more intense than in “model” composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call