Abstract

Adding conductive fillers to an insulating polymer matrix produces composites with unique properties. Varying amounts of carbon black (0.33, 0.67, and 1 wt%) and graphene nanoplatelets (5, 10, 15, and 20 wt%) were added to epoxy. In addition, a few carbon black/graphene nanoplatelet/epoxy formulations were also fabricated. The conductivity and tensile properties were determined and analyzed. The single filler composites containing 5 and 10 wt% graphene nanoplatelet and 0.33 wt% carbon black could be used for electrically insulating applications. Composites containing 15 and 20 wt% graphene nanoplatelet could be used for static dissipative applications. The following composites could be used for semi-conductive applications: 0.67 wt% carbon black/epoxy, 1 wt% carbon black/epoxy, 0.33 wt% carbon black/5 wt% graphene nanoplatelet/epoxy, and 0.33 wt% carbon black/10 wt% graphene nanoplatelet/epoxy. At the 95% confidence level, the combination of 0.33 wt% carbon black with 5 wt% graphene nanoplatelet caused the composite electrical resistivity (1/electrical conductivity) to significantly decrease from ∼1015 ohm-cm to ∼104 ohm-cm. It is likely that the highly branched, high surface area carbon black is forming an electrically conductive network with graphene nanoplatelets. Concerning single filler composites, adding ≤1 wt% carbon black did not significantly lower the composite tensile strain; however, adding graphene nanoplatelet did decrease tensile strain and increase modulus. One possible application for the 10 wt% graphene nanoplatelet/epoxy composite is in Polymer Core Composite Conductors for power transmission lines, which need to be electrically insulating, have improved thermal conductivity (increased from 0.2 to 0.3 W/m-K), increased tensile modulus (increased from 2.7 to 3.3 GPa), and good tensile strength (70 MPa) and strain (3.3%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.