Abstract
Tensile and compressive creep behavior of SLMed IN718 alloy under 973K (700°C) were investigated. Crept samples were analyzed by SEM and TEM to expose evolution of microstructure, precipitates and dislocation structure during the creep process. Results show that initial creep rate under compression is higher than under tension for the same creep conditions. Minimum creep rates are approximately the same both in tensile and compressive creep tests. The different creep behaviors may be related to the fact that tension stress promotes precipitations of fine needle-like γ′′ phases, while compression stress promotes precipitations of large size δ phases. The tension-compression asymmetry owns to the increment of chemical potential varying with the stress orientation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.