Abstract

Failure of materials and structures is inherently linked to localized mechanisms, from shear banding in metals, to crack propagation in ceramics and collapse of space-trusses after buckling of individual struts. In lightweight structures, localized deformation causes catastrophic failure, limiting their application to small strain regimes. To ensure robustness under real-world nonlinear loading scenarios, overdesigned linear-elastic constructions are adopted. Here, the concept of delocalized deformation as a pathway to failure-resistant structures and materials is introduced. Space-tileable tensegrity metamaterials achieving delocalized deformation via the discontinuity of their compression members are presented. Unprecedented failure resistance is shown, with up to 25-fold enhancement in deformability and orders of magnitude increased energy absorption capability without failure over same-strength state-of-the-art lattice architectures. This study provides important groundwork for design of superior engineering systems, from reusable impact protection systems to adaptive load-bearing structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.