Abstract

To investigate the impact of secreted factors of rat bone marrow mesenchymal stem cells (MSCs) on the proliferation and migration of tenocytes and provide evidence for the development of MSC-based therapeutic methods of tendon injury. Rat bone marrow mesenchymal stem cell-derived conditioned medium (MSC-CM) promoted the proliferation of tenocytes within 24h and decreased the percentage of tenocytes in G1 phase. MSC-CM activated the extracellular signal-regulated kinase1/2 (ERK1/2) signal molecules, while the ERK1/2 inhibitor PD98059 abrogated the MSC-CM-induced proliferation of tenocytes, decreased the fraction of tenocytes in the G1 phase and elevated p-ERK1/2 expression. Furthermore, MSC-CM promoted the migration of tenocytes within 6h, enhanced the formation of filamentous actin (F-actin) and increased the cellular and nuclear stiffness of tenocytes. MSC-CM promotes tenocyte proliferation by changing cell cycle distribution via the ERK1/2 signaling pathway. MSC-CM-induced tenocyte migration was accompanied by cytoskeletal polymerization and increases in cellular and nuclear stiffness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.