Abstract

Mood disorders, including anxiety and depression, are thought to be characterized by disrupted neuronal synapses and altered brain plasticity. The etiology is complex, involving numerous regions of the brain, comprising a multitude of neurotransmitter and neuromodulator systems. Recently, new studies on the teneurins, an evolutionary ancient family of type II transmembrane proteins have been shown to interact with latrophilins (LPHN), a similarly phylogenetically old family of adhesion G protein-coupled receptors (GPCR) forming a transsynaptic adhesion and ligand-receptor pair. Each of the four teneurin proteins contains bioactive sequences termed the teneurin C-terminal associated peptides (TCAP-1–4), which possess a number of neuromodulatory effects. The primary structures of the TCAP are most closely similar to the corticotropin-releasing factor (CRF) family of peptides. CRF has been implicated in a number of diverse mood disorders. Via an association with dystroglycans, synthetic TCAP-1 administration to both embryonic and primary hippocampal cultures induces long-term changes in neuronal structure, specifically increased neurite outgrowth, dendritic branching, and axon growth. Rodent models treated with TCAP-1 show reduced anxiety responses in the elevated plus-maze, openfield test, and acoustic startle test and inhibited CRF-mediated cocaine-seeking behaviour. Thus the teneurin/TCAP-latrophilin interaction may play a major role in the origin, development and treatment of mood disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call