Abstract

This paper proposes a texture-enhanced network (TENet) for intertidal sediment and habitat classification using multiband multipolarization synthetic aperture radar (SAR) images. The architecture introduces the texture enhancement module (TEM) into the UNet framework to explicitly learn global texture information from SAR images. The study sites are chosen from the northern part of the intertidal zones in the German Wadden Sea. Results show that the presented TENet model is able to detail the intertidal surface types, including land, seagrass, bivalves, bright sands/beach, water, sediments, and thin coverage of vegetation or bivalves. To further assess its performance, we quantitatively compared our results from the TENet model with different instance segmentation models for the same areas of interest. The TENet model gives finer classification accuracies and shows great potential in providing more precise locations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.