Abstract
Soil erosion has created landscape problems in many parts of the world and in particular in cold regions where the sensitive permafrost conditions have changed due to climate warming. Such a case occurred in the Tibetan Plateau (TP), which has been strongly affected by global warming and human activities. Monitoring technologies, like remote sensing and field surveys were used to explore soil erosion rates in the TP, but they were limited by the resolution and meteorological disturbance factors or the spatial and time scales. Here, we present for the first time 210Pbex (excess lead-210) and 137Cs (caesium-137) data of soils from the southeastern TP (SETP) covering an area of 640,000 km2. In the permafrost-dominant areas, the results show mean soil-erosion rates in the last 56â100 years that were relatively higher (1891 t·kmâ2·a-1) based on 210Pbex than those based on 137Cs (1623 t·kmâ2·a-1). Modelling results from the Revised Universal Soil Loss Equation (RUSLE) indicate relatively high mean soil erosion rates of 4363 and 4394 t·kmâ2·a-1 using a period covering the last 40 or 10 years respectively. Our data suggest accelerating erosion rates on the SETP that are linked to permafrost degradation, and glacier and snow melting due to accelerating global climate warming. The increase in ground surface temperature of âŒ2 °C in the last four decades has further shifted the regional hydrology, affecting the degeneration of vegetation cover and a further increase in soil-erosion rates. However, our radionuclides data also expose low erosion rates in the seasonally frozen ground at some sampling sites which indicates the complex nature of erosion trends in cold regions that require careful adaptation of soil management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.