Abstract

Much has been written about designing research experiences for undergraduate students [1–4], but what about providing meaningful experiences to high school students? There are many formal opportunities for high school students to conduct research, but early-career scientists and principal investigators (PIs) do not necessarily have much experience working with this age group, which presents different opportunities and challenges than working with undergraduates. Thus, we present guidance in this Ten Simple Rules article on how to be an effective research mentor for high school students based on our experiences as early-career biologists and our formal mentor training. Studies show that students—and the general public as a whole—have a narrow view of what a scientist is, does, and looks like [5, 6]. The opportunity to work in a research group may be the first time that high school students encounter a “real scientist.” Likely, it is also their first chance to peek inside the black box that is scientific research—something they may only know from the media. They will experience firsthand what it is like to work in a research environment (whether they are doing experiments or computational work) and will likely be surprised by how communication and collaboration not only are necessary to the scientific process but also make research more rewarding. Performing scientific research gives students the opportunity to witness the practical applications of concepts they have been taught in school and to observe how the experimental and analytical work done in research settings builds upon what they have learned in the classroom. Importantly, they will also experience the excitement and challenges of investigating open-ended questions without predetermined answers. Authentic research experiences can empower students to pursue research opportunities as undergraduates and to consider careers in science, technology, engineering, and mathematics (STEM). Engaging high school students in research and the process of doing science allows them to form meaningful relationships with mentors who can help them stay on track academically, serve as role models, and help prepare them for future careers. By working with high school students from the local community, mentors can bridge the gap between scientists and the general public and encourage students to attend their local university, which is a benefit for the mentor’s institution, too. For high school students—particularly those who will be first-generation college students—getting comfortable on their local college campuses can make a meaningful impact on their educational goals. There are also opportunities for their supervisors, who are often early-career scientists (graduate students or postdoctoral fellows [postdocs]), to broaden their mentoring skills, improve their communication of the complexities of everyday science to a new audience, and learn how to develop tangible project goals that can be tackled within a finite period—all of which are excellent professional development opportunities. Opportunities for high school students may be initiated either informally, through outreach with local schools, or formally, through an established program. We have compiled a list of programs, organized by state, that provide high school students with research experiences; please note that this list is not exhaustive. In general, placements range from the occasional half-day visit to year-long internships, and some placements are not necessarily local. Although the rules presented here are intended to guide mentors who will work with students for at least a few weeks, mentors working with students for shorter periods may also find some of these rules helpful. Some universities and medical schools have volunteer offices or organized programs for bringing high school students into the laboratory, so check whether there are already connections to schools in your area through previous student placements. Moreover, when initiating contact with prospective mentees, consider the opportunity you have to make a meaningful impact in the lives of young people who come from historically underrepresented and underserved populations or underprivileged backgrounds. Scientific societies and funding agencies may have specific mechanisms for funding summer high school students, and many of these are intended for students who come from groups that are underrepresented in science. Example programs from the list above include the American Fisheries Society’s Hutton Program and the Short-Term Experience for Underrepresented Persons at the National Institute of Diabetes and Digestive and Kidney Diseases. Some of these programs also provide stipends for the students, which relieves the additional pressure of needing to find a summer job. However you decide to bring a high school student into the laboratory, be sure to discuss with the prospective mentee what they hope to gain from the experience to make sure that your expectations are aligned before either of you commits to the placement. It is important to recognize that working with high school students presents different challenges and opportunities than working with undergraduates. For example, high school students may be more enthusiastic than undergraduates about performing research because they have likely only engaged in simple lab exercises at school. However, they also have less scientific knowledge than undergraduates and likely are not able to spend as much time doing research because of schedule restrictions. These challenges can easily be mitigated by the mentor with some planning, and we have found mentoring high school students to be extremely rewarding. If you decide to take on a high school student, we offer ten simple rules as guidance for providing the student with a positive experience while they are working with you. Although these rules were written with postdocs and advanced graduate students as the intended audience, we anticipate that they will also be helpful for PIs who have not yet hosted a high school student in their lab. In addition to these rules, we also recommend participating in mentor training through the National Research Mentoring Network or a similar program and familiarizing yourself with the literature on best practices in mentoring ([7–9] among many others) to strengthen your foundation in communicating and goal setting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call