Abstract

Researchers and engineers have increasingly used Deep Learning (DL) for a variety of Remote Sensing (RS) tasks. However, data from local observations or via ground truth is often quite limited for training DL models, especially when these models represent key socio-environmental problems, such as the monitoring of extreme, destructive climate events, biodiversity, and sudden changes in ecosystem states. Such cases, also known as small data problems, pose significant methodological challenges. This review summarises these challenges in the RS domain and the possibility of using emerging DL techniques to overcome them. We show that the small data problem is a common challenge across disciplines and scales that results in poor model generalisability and transferability. We then introduce an overview of ten promising DL techniques: transfer learning, self-supervised learning, semi-supervised learning, few-shot learning, zero-shot learning, active learning, weakly supervised learning, multitask learning, process-aware learning, and ensemble learning; we also include a validation technique known as spatial k-fold cross validation. Our particular contribution was to develop a flowchart that helps DL users select which technique to use given by answering a few questions. We hope that our review article facilitate DL applications to tackle societally important environmental problems with limited reference data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call