Abstract

The canonical Wnt pathway participates in inflammatory diseases and it is involved in neuropathic pain. This study evaluated the immunoexpression of the canonical Wnt signaling pathway in the articular cartilage of the temporomandibular joint (TMJ) and along the nociceptive trigeminal pathway in arthritic rats. For this, male Wistar rats were divided into Control (C) and Arthritic (RA) groups. Arthritis induction was performed through subcutaneous injection of methylated bovine serum albumin (mBSA) and complete Freund Adjuvant (CFA)/ Incomplete Freund Adjuvant (IFA) on the first 14 days (once a week), followed by 3 weekly intra-articular injections of mBSA (10 μl/joint; left TMJ). The following parameters were evaluated: nociceptive threshold, inflammatory infiltrate, type I and III collagen birefringence, immunohistochemistry for IL-1β, TNF-α, IL-6, Wnt10b, β-catenin, cyclin-D1 in articular cartilage, c-Myc in synovial membrane, and immunofluorescence analysis for c-Fos, Wnt-10b and β-catenin in the trigeminal ganglion and the trigeminal subnucleus caudalis. The RA group showed intense articular cartilage damage with proliferation of type III collagen, increased immunoexpression of proinflammatory cytokines and Wnt-10b, β-catenin and cyclin-D1 in the articular cartilage and c-Myc in the synovial membrane. In the RA group, a reduction in the nociceptive threshold was observed, followed by a significant increase in the expression of Wnt-10b in neurons and β-catenin in satellite cells of the trigeminal ganglion. c-Fos immunoexpression was observed in neurons, peripherally and centrally, in arthritic rats. Our data demonstrated that TMJ arthritis in rats causes articular cartilage damage and nociceptive behavior, with increased immunoexpression of canonical Wnt pathway in the articular cartilage and trigeminal ganglion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.