Abstract

Electromyography is a non-invasive method widely used to map muscle activation. For decades, it was commonly accepted that dry metallic electrodes establish poor electrode-skin contact, making them impractical for skin electromyography applications. Gelled electrodes are therefore the standard in electromyography with their use confined, almost entirely, to laboratory settings. Here we present novel dry electrodes, exhibiting outstanding electromyography recording along with excellent user comfort. The electrodes were realized using screen-printing of carbon ink on a soft support. The conformity of the electrodes helps establish direct contact with the skin, making the use of a gel superfluous. Plasma polymerized 3,4-ethylenedioxythiophene was used to enhance the impedance of the electrodes. Cyclic voltammetry measurements revealed an increase in electrode capacitance by a factor of up to 100 in wet conditions. Impedance measurements show a reduction factor of 10 in electrode impedance on human skin. The suitability of the electrodes for long-term electromyography recordings from the hand and from the face is demonstrated. The presented electrodes are ideally-suited for many applications, such as brain-machine interfacing, muscle diagnostics, post-injury rehabilitation, and gaming.

Highlights

  • Electromyography is a non-invasive method widely used to map muscle activation

  • It has been suggested that Surface EMG (sEMG) can quantify and report elementary emotions exceeding the reliability of self-reporting and image analysis[9,10]

  • By identifying specific muscle activation, facial sEMG can even discriminate between mood states, including Duchenne and non-Duchenne smiles[8,11]

Read more

Summary

Methods

Printing was accomplished by a manual application of a conductive carbon ink (Conductive compounds) on a blank temporary tattoo paper (Papilio), which served as a substrate. This was followed by curing at 130 °C for 10 min. The adhesive passivation layer with pre-defined holes and the printed electrode were pressed together. To mechanically support contact of the printed electrode array and a ZIF connector (Omnetics), a polyimide tape (Kapton, 3 M) with pre-defined holes was added onto the array bonding pads. Electrode-skin impedance was measured using an amplifier evaluation system (RHD2000, Intan). Structural characterization of the printed electrode surface was performed using SEM (JEOL JSM-6700 F).

Author Contributions
Findings
Additional Information
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call