Abstract

Temporary inhibition of the cysteine proteinases papain and cathepsin L was observed with several hairpin loop mutants of recombinant chicken cystatin at enzyme concentrations above nanomolar. Kinetic modelling of inhibition data, gel electrophoresis and amino acid sequencing revealed that reappearance of papain activity is due to selective cleavage of the Gly 9-Ala 10 bond in the N-terminal binding area of the chicken cystatin variants, resulting in truncated inhibitors of lower affinity. Cleavage of the same bond by contaminating papaya proteinase IV was ruled out by previous purification of papain and suitable control experiments. According to the proposed kinetic model, cleavage occurs within the enzyme-inhibitor complex with first order rate constants k temp of 2.3 × 10 −3 up to 5 × 10 −1 s −1. A similar k temp K m ratio was found for all mutants (0.7 × 10 6–2.1 × 10 6 s −1·M −1); it is almost identical with the k cat K m ratio of the peptide substrate Z-Phe-Arg-NHMec. These results suggest that distorted contacts of one of the hairpin loops affect binding of the N-terminal contact area in a way that covalent interaction of the Gly 9-Ala 10 bond with the active-site Cys residue of papain can occur and the bond is cleaved in a substrate-like manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.