Abstract

Abstract The in vitro propagation technique via temporary immersion bioreactors is a tool that, through the culture in a liquid medium, allows an increase in the efficiency of seedling production. Several researches with the strawberry crop have shown greater efficiency of the system compared to the conventional process of micropropagation in solid medium. In this sense, the objective herein was to establish a protocol of multiplication and rooting of the ‘Pircinque’ strawberry, in temporary immersion bioreactors. Two distinct and independent studies were carried out, characterized by the multiplication and rooting stages of strawberry explants, newly introduced and registered in Brazil. Two culture media (MS and KNOP) were studied and, as a control treatment, the growth of the explants in solid culture medium was evaluated with the addition of 5 g L-1 of agar. Different immersion times of the culture medium were explored: five or eight times a day, for 15 minutes. The study was composed of the culture medium and immersion time factors, as well as the control (solid) treatment. It was verified that the use of temporary immersion bioreactors system is an efficient technique for the multiplication and rooting of explants of strawberry cv. Pircinque, when compared to the conventional method of micropropagation with the use of solid culture medium, making it possible to optimize the production of seedlings in biofactories. The MS liquid medium, in contact with explants of ‘Pircinque’ strawberry five times a day, increased the growth of the aerial part and the root system.

Highlights

  • The increasing demand for species of economic importance has led to the search for the production of high-quality seedlings in a short period of time, through biotechnological tools

  • The use of temporary immersion bioreactors is a tool that provides greater success in the production of in vitro seedlings. This system is an option for the production of large scale seedlings compared to conventional micropropagation, since it has advantages such as: acceleration and increase of multiplication and productivity rates, uniformity of production, reduction of labor and, total cost per unit due to the automated system (DEBIASI, 2011), it has been successfully used in the micropropagation of species of economic interest (WILKEN et al, 2014)

  • From Tukey’s test (p

Read more

Summary

Introduction

The increasing demand for species of economic importance has led to the search for the production of high-quality seedlings (with homogeneity, genetic and phytosanitary control) in a short period of time, through biotechnological tools. For this reason, in vitro propagation has proven to be a highly effective method for the production of a large number of plants (GEORGIEVA et al, 2016) and can be used for several species. This system is an option for the production of large scale seedlings compared to conventional micropropagation, since it has advantages such as: acceleration and increase of multiplication and productivity rates, uniformity of production, reduction of labor and, total cost per unit due to the automated system (DEBIASI, 2011), it has been successfully used in the micropropagation of species of economic interest (WILKEN et al, 2014)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call