Abstract

Temporary hearing threshold shift (TTS) caused by fatiguing sounds in the 1.5 to 16 kHz range has been documented in harbor porpoises (Phocoena phocoena). To assess impacts of anthropogenic noise on porpoise hearing, TTS needs to be investigated for other frequencies, as susceptibility appears to depend on the frequency of the fatiguing sound. TTS was quantified after two porpoises (Porpoises F05 and M06) were exposed for 1 hour to a continuous one-sixth-octave noise band centered at 32 kHz, at average received sound pressure levels of 118 to 148 dB re 1 µPa, and at a sound exposure level (SEL) range of 154 to 184 dB re 1 µPa2s. Hearing thresholds for 32, 44.8, and 63 kHz tonal signals were determined before and after exposure to quantify initial TTS and recovery. Porpoise M06’s hearing was tested 1 to 4 min after exposure. At 32 kHz, the lowest SEL that resulted in significant TTS1-4 (3.4 dB) was 166 dB re 1 µPa2s. At 44.8 kHz, the lowest SEL that resulted in significant TTS1-4 (5.2 dB) was 178 dB re 1 µPa2s. The highest TTS1-4 (18.3 dB) occurred at 44.8 kHz after exposure to 184 dB SEL. Porpoise F05’s hearing was tested 12 to 16 min after exposure. At 32 kHz, the lowest SEL that resulted in significant TTS12-16 (3.5 dB) was 184 dB re 1 µPa2s. At 44.8 kHz, the lowest SEL that resulted in significant TTS12-16 (1.2 dB) was 178 dB re 1 µPa2s. The highest TTS12-16 (8.2 dB) occurred in Porpoise F05 at 44.8 kHz after exposure to 184 dB SEL. At 63 kHz, no TTS could be elicited in either animal. Considering that Porpoise F05 had more time than Porpoise M06 for recovery, the susceptibility of the two porpoises to TTS after exposure to sounds of 32 kHz was similar. In the range investigated so far (1.5 to 32 kHz), susceptibility to TTS appears to increase with increasing frequency below ~6.5 kHz, and to decrease with increasing frequency above ~6.5 kHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.