Abstract

Rounding and loosening of cells is a consequence of infection with pseudorabies virus (PrV), both in vitro and in vivo. These changes in the normal structure of the cell may be the result of cytoskeletal changes. Immunofluorescence staining of actin filaments and microtubule bundles was performed to examine whether PrV induces a reorganization of these cytoskeletal components in infected swine kidney (SK) cells. Every 2 h until 12 h post-inoculation (p.i.), cells were washed in cytoskeleton stabilizing buffer (CSB), fixed with paraformaldehyde and washed again with CSB. Cells were permeabilized with a 1/1000 dilution of Triton X-100 and actin filaments were stained by incubating cells with phalloidin-Texas Red. Staining of microtubules was done by incubating the cells subsequently with mouse monoclonal anti-α-tubulin and goat anti-mouse IgG-FITC. During the course of infection, actin fibers of SK cells were rearranged in the following sequence: (1) disappearance of thick actin stress fibers between 4 and 6 h p.i., (2) complete loss of stress fibers between 6 and 8 h p.i., and (3) reappearance of thin stress fibers starting from 10 h p.i. In contrast to herpes simplex virus 1 (HSV1) or equine herpesvirus 1 (EHV1), PrV infection did not induce changes in the cellular microtubule network. PrV infection induces a temporary disassembly of actin stress fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.