Abstract
By juxtaposing time series analyses of activity measured from a fully recurrent network undergoing disrupted processing and of activity measured from a continuous meta-cognitive report of disruption in real-time language comprehension, we present an opportunity to compare the temporal statistics of the state-space trajectories inherent to both systems. Both the recurrent network and the human language comprehension process appear to exhibit long-range temporal correlations and low entropy when processing is undisrupted and coordinated. However, when processing is disrupted and discoordinated, they both exhibit more short-range temporal correlations and higher entropy. We conclude that by measuring human language comprehension in a dense-sampling manner similar to how we analyze the networks, and analyzing the resulting data stream with nonlinear time series analysis techniques, we can obtain more insight into the temporal character of these discoordination phases than by simply marking the points in time at which they peak.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.