Abstract
The low-energy electron-scattering resonances of pyrene were characterized using experimental and computational methods. Experimentally, a two-dimensional photoelectron imaging of the pyrene anion was used to probe the dynamics of resonances over the first 4 eV of the continuum. Computationally, the energies and character of the anion states were determined using equation-of-motion coupled cluster calculations, while taking specific care to avoid the collapse onto discretized continuum levels, and an application of the pairing theorem. Our results are in good agreement with the predictions of electron-scattering calculations that include an offset and with the pyrene anion absorption spectrum in a glass matrix. Taken together, we offer an assignment of the first five electronic resonances of pyrene. Some of the population in the lowest-energy 2B1u resonance was observed to decay to the ground electronic state of the anion, while all other resonances decay by a direct autodetachment. The astronomical relevance of a ground-state electron capture proceeding via a low-energy resonance in pyrene is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.