Abstract

Reaching is a well-practiced functional task crucial to daily living activities, and temporal–spatial measures of reaching reflect function for both adult and pediatric populations with upper-extremity motor impairments. Inertial sensors offer a mobile and inexpensive tool for clinical assessment of movement. This research outlines a method for measuring temporal–spatial reach parameters using inertial sensors, and validates these measures with traditional marker-based motion capture. 140 reaches from 10 adults, and 30 reaches from nine children aged 18–20 months, were recorded and analyzed using both inertial-sensor and motion-capture methods. Inertial sensors contained three-axis accelerometers, gyroscopes, and magnetometers. Gravitational offset of accelerometer data was measured when the sensor was at rest, and removed using sensor orientation measured at rest and throughout the reach. Velocity was calculated by numeric integration of acceleration, using a null-velocity assumption at reach start. Sensor drift was neglected given the 1–2s required for a reach. Temporal–spatial reach parameters were calculated independently for each data acquisition method. Reach path length and distance, peak velocity magnitude and timing, and acceleration at contact demonstrated consistent agreement between sensor- and motion-capture-based methods, for both adult and toddler reaches, as evaluated by intraclass correlation coefficients from 0.61 to 1.00. Taken together with actual difference between method measures, results indicate that these functional reach parameters may be reliably measured with inertial sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call