Abstract

Temporal-spatial distribution of synthetic pyrethroids (SPs) in overlying water and surface sediments and ecological risk to aquatic systems were investigated, where paired water and surface sediments were collected during dry and wet periods in Guangzhou urban waterways. Eight target SPs (i.e., tefluthrin, bifenthrin, cyhalothrin, permethrin, cyfluthrin, cypermethrin, esfenvalerate, and deltamethrin), with cypermethrin and permethrin as major components, were ubiquitously detected in both water (dissolved and particle phases, separately) and sediments. Significant increases of ΣSP (sum of eight SPs) concentrations were observed in both water and sediment from the dry period to the wet period. The spatial distribution of SPs was mostly impacted by land-use type, with the highest ΣSP concentrations in the residential areas, which indicates the massive application of pyrethroids in household mosquito control. It is demonstrated that SPs preferred to be adsorbed to the particles, and rainfall-induced runoff was suggested as an important mechanism that moved SPs to the receiving waterways. A rising trend on sediment concentrations of SPs in the Guangzhou area in the last decade implied increasing application of pyrethroid insecticides, with cypermethrin and permethrin as the dominant components, where the contamination of SPs was positively related with urbanization rate (e.g., resident population and green coverage area). A special emphasis was placed on the potential effects of both individual SPs and their mixtures in three trophic levels (i.e., algae, daphnia, and fish) using toxic units (TUs) and risk quotients (RQs) for water and sediments. In spite of no acute effects due to SPs in the sediments, the toxic units showed daphnia as the most sensitive species in water, with acute risks to daphnia exhibited in several sampling sites. The risk assessment points out that a chronic toxicity (RQ index) caused by SPs in three trophic levels (algae, daphnia, and fish) exists, especially in Daphnia magna. Graphical abstract.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.