Abstract
Recent advances in ray tracing hardware bring real-time path tracing into reach, and ray traced soft shadows, glossy reflections, and diffuse global illumination are now common features in games. Nonetheless, ray budgets are still limited. This results in undersampling, which manifests as aliasing and noise. Prior work addresses these issues separately. While temporal supersampling methods based on neural networks have gained a wide use in modern games due to their better robustness, neural denoising remains challenging because of its higher computational cost. We introduce a novel neural network architecture for real-time rendering that combines supersampling and denoising, thus lowering the cost compared to two separate networks. This is achieved by sharing a single low-precision feature extractor with multiple higher-precision filter stages. To reduce cost further, our network takes low-resolution inputs and reconstructs a high-resolution denoised supersampled output. Our technique produces temporally stable high-fidelity results that significantly outperform state-of-the-art real-time statistical or analytical denoisers combined with TAA or neural upsampling to the target resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the ACM on Computer Graphics and Interactive Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.