Abstract
Metropolis Light Transport (MLT) is a global illumination algorithm that is well-known for rendering challenging scenes with intricate light paths. However, MLT methods tend to produce unpredictable correlation artifacts in images, which can introduce visual inconsistencies for animation rendering. This drawback also makes it challenging to denoise MLT renderings while maintaining temporal stability. We tackle this issue with modern learning-based methods and build a sequence denoiser combining the recurrent connections with the cutting-edge vision transformer architecture. We demonstrate that our sophisticated denoiser can consistently improve the quality and temporal stability of MLT renderings with difficult light paths. Our method is efficient and scalable for complex scene renderings that require high sample counts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.