Abstract

In this Letter, we propose a scheme to use a temporally stable pump source in a high-power random distributed feedback Raman fiber laser (RRFL) with a half-open cavity. Different from conventional pump manners, the pump source is based on an Yb-doped fiber amplifier, seeded by a temporally stable phase-modulated single-frequency fiber laser for suppressing the spectral broadening and second-order Raman Stokes generation in the output laser. Using a piece of 50-m-long 20/400 µm passive fiber, the maximum output power of 1570 W was obtained with a pump power of 2025 W. The conversion efficiency with respect to the pump power was 77.5%. To the best of our knowledge, this is the highest output power ever reported in a RRFL to date. This work could provide a novel method for power scaling of RRFLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.