Abstract

The detailed understandings of temperature profiles and flow-flame interaction in unsteady premixed swirling flames are crucial for the development of low emission turbine engines. Here, a phase-locked tomographic reconstruction technique measuring the large absorption cross section of CO2 at its mid-infrared fundamental band around 4.2 μm is used to acquire the flame temperature and in situ CO2 volume fraction distribution in a turbulent premixed swirling flame under different levels of external acoustic forcing amplitude. The temporally resolved temperature field variation reveals large temperature fluctuation in unsteady premixed swirling flames produced near the nozzle exit due to vortex-driven mixing of surrounding cold gas. The temperature fluctuation quickly dissipates when moving downstream of the flame with the flow velocity of the burnt gas. The accurate high temporal resolution thermodynamic measurements of the phase-locked tomographic thermometry technique reported in this work can be generally applied to periodic reacting flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.