Abstract
At atmospheric pressure in Ar, a micro-thin-cathode discharge operates in a self-pulsing mode due to periodic ignition of a nanosecond spark discharge with a long living afterglow (several hundred nanoseconds). In this mode, optical emission spectra of the nanosecond spark and the afterglow are investigated. The electron density and temperature in the pure Ar discharge are measured by the Stark broadening and shift of the Ar 3p6 → 1s5 transition (415.859 nm). The nanosecond spark has an electron density of the order of 1017 cm−3 and an electron temperature of 5 eV. The gas temperature is obtained by analyzing the emission spectra of the N2 second positive system with an admixture of 0.5% N2. The measured gas temperature agrees very well with the result of a zero-dimensional kinetic simulation. The temporal development of the spatial distribution of separate emission lines shows that not only the nanosecond spark but the afterglow is also strongly localized. The temporal development of the emission spectrum provides powerful proof that the nanosecond spark discharge, due to thermionic emission, occurs in the self-pulsing mode with nanosecond current peaks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.