Abstract

Temporal object detection has attracted significant attention, but most popular detection methods cannot leverage rich temporal information in videos. Very recently, many algorithms have been developed for video detection task, yet very few approaches can achieve real-time online object detection in videos. In this paper, based on the attention mechanism and convolutional long short-term memory (ConvLSTM), we propose a temporal single-shot detector (TSSD) for real-world detection. Distinct from the previous methods, we take aim at temporally integrating pyramidal feature hierarchy using ConvLSTM, and design a novel structure, including a low-level temporal unit as well as a high-level one for multiscale feature maps. Moreover, we develop a creative temporal analysis unit, namely, attentional ConvLSTM, in which a temporal attention mechanism is specially tailored for background suppression and scale suppression, while a ConvLSTM integrates attention-aware features across time. An association loss and a multistep training are designed for temporal coherence. Besides, an online tubelet analysis (OTA) is exploited for identification. Our framework is evaluated on ImageNet VID dataset and 2DMOT15 dataset. Extensive comparisons on the detection and tracking capability validate the superiority of the proposed approach. Consequently, the developed TSSD-OTA achieves a fast speed and an overall competitive performance in terms of detection and tracking. Finally, a real-world maneuver is conducted for underwater object grasping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call