Abstract

The embryonic process of forming a complex structure such as the heart remains poorly understood. Here, we show that Six2 marks a dynamic subset of second heart field progenitors. Six2-positive (Six2+) progenitors are rapidly recruited and assigned, and their descendants are allocated successively to regions of the heart from the right ventricle (RV) to the pulmonary trunk. Global ablation of Six2+ progenitors resulted in RV hypoplasia and pulmonary atresia. An early stage-specific ablation of a small subset of Six2+ progenitors did not cause any apparent structural defect at birth but rather resulted in adult-onset cardiac hypertrophy and dysfunction. Furthermore, Six2 expression depends in part on Shh signaling, and Shh deletion resulted in severe deficiency of Six2+ progenitors. Collectively, these findings unveil the chronological features of cardiogenesis, in which the mammalian heart is built sequentially by temporally distinct populations of cardiac progenitors, and provide insights into late-onset congenital heart disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.