Abstract
Additive manufacturing (AM) is known to generate large magnitudes of residual stresses (RS) within builds due to steep and localized thermal gradients. In the current state of commercial AM technology, manufacturers generally perform heat treatments in effort to reduce the generated RS and its detrimental effects on part distortion and in-service failure. Computational models that effectively simulate the deposition process can provide valuable insights to improve RS distributions. Accordingly, it is common to employ Computational fluid dynamics (CFD) models or finite element (FE) models. While CFD can predict geometric and thermal-fluid behavior, it cannot predict the structural response (e.g., stress–strain) behavior. On the other hand, an FE model can predict mechanical behavior, but it lacks the ability to predict geometric and fluid behavior. Thus, an effectively integrated thermofluidic–thermomechanical modeling framework that exploits the benefits of both techniques while avoiding their respective limitations can offer valuable predictive capability for AM processes. In contrast to previously published efforts, the work herein describes a one-way coupled CFD-FEA framework that abandons major simplifying assumptions, such as geometric steady-state conditions, the absence of material plasticity, and the lack of detailed RS evolution/accumulation during deposition, as well as insufficient validation of results. The presented framework is demonstrated for a directed energy deposition (DED) process, and experiments are performed to validate the predicted geometry and RS profile. Both single- and double-layer stainless steel 316L builds are considered. Geometric data is acquired via 3D optical surface scans and X-ray micro-computed tomography, and residual stress is measured using neutron diffraction (ND). Comparisons between the simulations and measurements reveal that the described CFD-FEA framework is effective in capturing the coupled thermomechanical and thermofluidic behaviors of the DED process. The methodology presented is extensible to other metal AM processes, including power bed fusion and wire-feed-based AM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.