Abstract

Recent experimental data have characterized a form of long-term synaptic modification that depends on the relative timing of pre- and post-synaptic action potentials. Modeling studies indicate that this rule can automatically adjust excitatory synaptic strengths so that the post-synaptic neuron receives roughly equal amount of excitation and inhibition and as a consequence fires irregular spike trains as observed in vivo. This rule also induces competition between different inputs and strengthens groups of synapes that are correlated over short time periods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.