Abstract

We examine the fundamental problem of background modeling which is to model the background scenes in video sequences and segment the moving objects from the background. A novel approach is proposed based on the Restricted Boltzmann Machine (RBM) while exploiting the temporal nature of the problem. In particular, we augment the standard RBM to take a window of sequential video frames as input and generate the background model while enforcing the background smoothly adapting to the temporal changes. As a result, the augmented temporally adaptive model can generate stable background given noisy inputs and adapt quickly to the changes in background while keeping all the advantages of RBMs including exact inference and effective learning procedure. Experimental results demonstrate the effectiveness of the proposed method in modeling the temporal nature in background.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.