Abstract

The Myra mine, now inactive, produced Zn and Cu concentrates from a Zn-rich, Kuroko-type, volcanogenic massive sulfide deposit located in the mountainous interior of Vancouver Island. The climate at the site is classified as “Marine West Coast”, with annual precipitation exceeding 2200 mm. Water from a losing stream on the mountainside above the mine follows preferential, fracture-controlled pathways to the upper workings before draining through the 10-Level portal. With a view toward mine decommissioning, portal discharge rate was monitored continuously over a 17-month period during which 46 water samples were collected. Effluent chemistry, dominated by Ca, HCO 3 and SO 4, shows moderate to high total base metal concentrations and near-neutral pH. Carbonatization, mainly of mafic rocks in the hangingwall, provides significant acid neutralizing potential. Metal concentrations vary seasonally, with smaller spikes associated with summer storm events, and a main peak associated with flushing of the workings during the first heavy autumn rains. Aqueous speciation modeling suggests that Fe and Al concentrations are controlled by the solubilities of hydrous ferric oxides and microcrystalline gibbsite, respectively. Concentrations of Zn, Cu and Cd appear controlled by sorption rather than by the solubilities of mineral phases. A comparison of precipitate concentrations observed in portal effluent with predictions from mass balance (inverse) modeling results suggests that less than 5% of the precipitated Fe and Al hydroxides are transported from the mine. However, amounts of sorbed Cu, Zn and Cd measured in the effluent are only slightly lower than modeled values. This suggests that the small fraction of (probably finer) Fe precipitates in portal effluent sorbs most of the Zn, Cu and Cd predicted by modeling. Based on mass balance calculations, metal loadings are explained by the oxidation of 3830 kg of pyrite, 600 kg of sphalerite and 190 kg of chalcopyrite, annually. Circum-neutral drainage conditions are maintained by the reaction of almost 19,800 kg of calcite, annually.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call