Abstract

Global climate change (GCC) is expected to affect key environmental variables such as temperature and rainfall, which in turn influence the infection dynamics of metazoan parasites in tropical aquatic hosts. Thus, our aim was to determine how temporal patterns of temperature and rainfall influence the mean abundance and aggregation of three parasite species of the fish Cichlasoma urophthalmus from Yucatán, México. We calculated mean abundance and the aggregation parameter of the negative binomial distribution k for the larval digeneans Oligogonotylus manteri and Ascocotyle (Phagicola) nana and the ectoparasite Argulus yucatanus monthly from April 2005 to December 2010. Fourier analysis of time series and cross-correlations were used to determine potential associations between mean abundance and k for the three parasite species with water temperature and rainfall. Both O. manteri and A. (Ph.) nana exhibited their highest frequency peaks in mean abundance at 6 and 12 months, respectively, while their peak in k occurred every 24 months. For A. yucatanus the frequency peaks in mean abundance and k occurred every 12 months. We suggest that the level of aggregation at 24 months of O. manteri increases the likelihood of fish mortality. Such a scenario is less likely for A. (Ph.) nana and A. yucatanus, due to their low infection levels. Our findings suggest that under the conditions of GCC it would be reasonable to expect higher levels of parasite aggregation in tropical aquatic hosts, in turn leading to a potential increase in parasite-induced host mortality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call