Abstract

Temporal variation of leaf area index (LAI) in two young Norway spruce stands with different densities was monitored during eight consecutive growing seasons (1998–2005). We focused on: (1) LAI dynamics and above-ground mass production of both spruce stands and their comparison, (2) leaf area duration (LADU), crop production index (CPI) and leaf area efficiency (LAE) evaluation, and (3) thinning impact on the above-mentioned parameters. Also, we tried to deduce the most effective LAI value for the Norway spruce forest investigated. The LAI values of both spruce stands showed a typical seasonal course. To describe the LAI dynamics of the stand, we recommend taking LAI measurements within short time intervals at the time of budding and needle expansion growth (i.e., in early spring) and close to the LAI peak, when the twig growth has been completed. The reason was that after reaching the seasonal maximum, no significant differences between subsequently obtained values were found in the following 2 months. Therefore, we recommend this period for the estimation of seasonally representative LAI values, enabling the comparison of various spruce stands. The maximum hemi-surface LAI value reached 12.4. Based on our results, the most effective LAI values for maximum above-ground biomass production were within the range of 10–11. We found an LAI over these values to be less effective for additional production of above-ground biomass. In forest practice, thinning intensity is mostly described by percentage of stocking reduction. We want to show that not only thinning intensity, but also the type of thinning is important information. The type of thinning significantly affected the stand above-ground biomass increment, canopy openness, stand LAI and LAI efficiency. The stimulating effect of high-type thinning was observed; the LAE as well as the CPI increased. Low-type thinning had no such effects on LAE increments compared to the high-type thinning with similar intensity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.