Abstract

The temporal variability of the physical and chemical conditions of coastal waters off Ensenada, Baja California (Mexico) was characterized. A historical analysis was made based on 11 years (1998–2008) of temperature and salinity data records measured quarterly by IMECOCAL, along a transect perpendicular to the coast (CalCOFI line 100). Moreover, the physical and chemical conditions at a coastal monitoring observatory called station ENSENADA were described using a 2-year data series (October 2006–November 2008) obtained with improved temporal resolution. The historical analysis of line 100 showed marked seasonal variability in the thermohaline conditions associated with fluctuations in the flow of the equatorward California Current and the poleward California Undercurrent, as well as with coastal upwelling events whose magnitude and frequency increase towards spring–summer. Interannual variability was also observed, related to warm and/or cold ENSO phases that modify the characteristics of the water column in this coastal region. The most striking characteristics of the interannual variability at station ENSENADA were La Niña conditions recorded from summer 2007 to mid 2008. During this cold ENSO phase, temperature, salinity, dissolved oxygen, density, and dissolved inorganic carbon data revealed the anomalous presence of subsurface water at the surface layers in spring 2008. Results suggest that the coastal observatory is sensitive to the temporal variability of hydrographic conditions on shelf coastal waters (<50 km) off Ensenada in the northern BC region. Consequently, station ENSENADA would be a good location to high-frequency monitors the oceanographic conditions of the transitional region between tropical/subtropical and subarctic systems of the California Current System.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.