Abstract

Here we report on temporal changes in the concentration and composition of lignin phenols in high molecular weight (< 0.2 μm, > 1 kDa) dissolved organic matter (HMW DOM) collected from the lower Mississippi and Pearl Rivers (MR and PR) (USA). Monthly water samples were collected at a station in the lower reach in each river from August 2001 to August 2003. Significantly higher concentrations of lignin and Λ 8 values (mg lignin phenols in 100 mg organic carbon) in the Pearl River than in the Mississippi River, reflected sporadic inputs of terrestrial DOM during rainstorm events from wetlands and forest soils. Larger seasonal variations in lignin concentration and composition in the Pearl River, compared to the Mississippi River, were attributed to shifts in organic matter sources from topsoil inputs during rainstorm events to groundwater inputs and in situ production during base flow in this small river. Conversely, lower Λ 8 and vanillic acid to vanillin ratios [(Ad/Al)v] in the HMW DOM of the lower Mississippi River may be a result of a lower export rate of lignin from agricultural soils due to lower carbon storage in the expansive agricultural systems of the Mississippi River watershed, as well as dilution of phytoplankton DOM inputs. Large seasonal changes in lignin concentration and Λ 8 (linked at times with river discharge), and minimal variability in the composition of lignin phenols, likely represented an integrated signal of soil-derived vascular inputs from the upstream drainage basin. If we are to better understand the controls of organic matter delivery to the coastal zone from both small and large rivers, sampling strategies need to be adjusted to account for the different scales of hydrologic response time and in situ processing associated with different residence times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.