Abstract
ABSTRACTWe show that temporal variability in root populations can depend upon the scale of measurement (particularly the sampled soil volume). The presence of roots in a range of volumes of soil was studied using perspex tubes installed horizontally into the soil around three mature kiwifruit vines. Roots intercepting lines scored on the tubes were counted using a periscope. For small volumes of soil (c. 2–4 cm3) the root counts varied with time in a very irregular manner, and as the interval between measurements increased the autocorrelation between the measurements decayed rapidly. At about half of the locations monitored there was no significant autocorrelation between measurements 27 d apart. Linear interpolation in these time series was unreliable, and where the correlation dimension could be resolved it was usually non‐integer (suggesting chaotic behaviour). The time series measured at different locations were poorly correlated, indicating weak coordination. As the observed soil volume increased, the coordination between locations improved, the autocorrelation function increased, and linear interpolation errors decreased (although these remained substantial). Clearly there are considerable fundamental constraints on our ability to predict the root behaviour of kiwifruit vines at scales that are appropriate for mechanistic models of nutrient and water uptake. We discuss the need for a new conceptual model of the fine‐root systems of kiwifruit and similar species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.