Abstract
Despite airborne microorganisms representing a relevant fraction of atmospheric suspended particles, only a small amount of information is currently available on their abundance and diversity and very few studies have investigated the environmental factors influencing the structure of airborne bacterial communities. In this work, we used quantitative PCR and Illumina technology to provide a thorough description of airborne bacterial communities in the urban area of Milan (Italy). Forty samples were collected in 10-day sampling sessions, with one session per season. The mean bacterial abundance was about 10⁴ ribosomal operons per m³ of air and was lower in winter than in the other seasons. Communities were dominated by Actinobacteridae, Clostridiales, Sphingobacteriales and few proteobacterial orders (Burkholderiales, Rhizobiales, Sphingomonadales and Pseudomonadales). Chloroplasts were abundant in all samples. A higher abundance of Actinobacteridae, which are typical soil-inhabiting bacteria, and a lower abundance of chloroplasts in samples collected on cold days were observed. The variation in community composition observed within seasons was comparable to that observed between seasons, thus suggesting that airborne bacterial communities show large temporal variability, even between consecutive days. The structure of airborne bacterial communities therefore suggests that soil and plants are the sources which contribute most to the airborne communities of Milan atmosphere, but the structure of the bacterial community seems to depend mainly on the source of bacteria that predominates in a given period of time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.