Abstract

Detailed information on forest tree species is crucial to inform management and policy and support environmental and ecological research. Sentinel-2 imagery is useful for obtaining spatially explicit and frequent information on forest tree species due to its suitable spatial, spectral, and temporal resolutions. However, classification workflows often do not generalise well to time periods that are not seen by the model during the calibration phase. This study investigates the temporal transferability of dominant tree species classification. To this end, the Random Forest, Support Vector Machine, and Multilayer Perceptron algorithms were used to classify five tree species in Flanders (Belgium) with regularly spaced Sentinel-2 time series from 2018 to 2022. Cross-year single-year input scenarios were compared with same-year single-year input scenarios to quantify the temporal transferability of the five evaluated years. This resulted in a decrease in overall accuracy between 2.30 and 14.92 percentage points depending on the algorithm and evaluated year. Moreover, our results indicate that the cross-year classification performance could be improved by using multi-year training data, reducing the drop in overall accuracy. In some cases, gains in overall accuracy were even observed. This study highlights the importance of including interannual spectral variability during the training stage of tree species classification models to improve their ability to generalise in time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.