Abstract

The skin covers almost the entire body and plays an important role in detoxification and elimination of xenobiotics. These processes are initiated following the binding of xenobiotics to the aryl hydrocarbon receptor (AhR), which leads to the expression of several detoxification enzymes. To gain some insights on their impacts on skin cells over time, a temporal transcriptional analysis using gene expression arrays was performed in human primary epidermal keratinocyte (HEK) cells exposed for 6, 24 and 48 h to β-naphthoflavone (βNF), a potent agonist of AhR. Our results demonstrated that expression of genes related to xenobiotic, inflammation, and extracellular matrix remodeling was increased upon βNF treatment from 6 h onwards. In contrast, the anti-oxidative response was seen mainly starting at 24 h. While some of the genes controlled by the epidermal differentiation complex was induced as soon as 6 h, expression of most of the S100 related genes located within the same chromosomal locus and keratin genes was increased at later times (24 and 48 h). Altogether our transcriptomic data highlight that following βNF exposure, HEK cells elicited a protective xenobiotic response together with the activation of inflammation and keratinocyte regeneration. Later on these processes were followed by the stimulation of anti-oxidant activity and terminal differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.