Abstract

This paper addresses the problem of estimating the temporal synchronization in mobile sensors' networks, by using image sequence analysis of their corresponding scene dynamics. Unlike existing methods, which are frequently based on adaptations of techniques originally designed for wired networks with static topologies, or even based on solutions specially designed for ad hoc wireless sensor networks, but that have a high energy consumption and a low scalability regarding the number of sensors, this work proposes a novel approach that reduces the problem of synchronizing a general number $$N$$ N of sensors to the robust estimation of a single line in $${\mathbb {R}}^{N+1}$$ R N + 1 . This line captures all temporal relations between the sensors and can be computed without any prior knowledge of these relations. It is assumed that (1) the network's mobile sensors cross the field of view of a stationary calibrated camera that operates with constant frame rate and (2) the sensors trajectories are estimated with a limited error at a constant sampling rate, both in the world coordinate system and in the camera's image plane. Experimental results with real-world and synthetic scenarios demonstrate that our method can be successfully used to determine the temporal alignment in mobile sensor networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call