Abstract

Otoacoustic emissions evoked by a click (CEOAEs) can be reduced if the evoking sound is preceded or followed by another ("suppressor") click. Studying the temporal suppression of CEOAEs can provide insights into the dynamics of cochlear nonlinearity. However, temporal suppression has never been measured in basilar-membrane (BM) motion. Thus, it remains unclear whether the characteristics of CEOAE temporal suppression are reflected in BM responses. Here we simultaneously measured ear-canal pressure and BM velocity (laser Doppler vibrometry) in response to clicks in gerbil. When the suppressor click preceded the evoking click, CEOAEs were maximally suppressed for interclick intervals (ICIs) equivalent to ~2 periods of the analyzed frequency (9-14 kHz). Maximal temporal suppression at nonzero ICIs has been previously observed in human CEOAEs. BM responses to clicks were maximally reduced when the suppressor click preceded the evoking one by ~1 period of the characteristic frequency (CF ~14 kHz). Thus, the "delayed" characteristics of CEOAE temporal suppression are reflected in BM motion, although on a different time scale. When the suppressor click followed the evoking click, CEOAEs were augmented rather than suppressed, while enhancement was not observed in BM motion at the CF. This result indicates that some aspects of CEOAE temporal suppression are intrinsic to CEOAE generation mechanisms and/or to places that are not reflected in a BM motion at a single-location.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.