Abstract

Patterned activity in neocortical electroencephalograms, including slow waves and gamma oscillations, is thought to reflect the organized activity of neocortical neurons that comprises many specialized neuron subtypes. We found that the timing of action potentials during slow waves in individual cortical neurons was correlated with their laminar positions and axonal targets. Within gamma cycles nested in the slow-wave depolarization, cortical pyramidal cells fired earlier than did interneurons. At the start of slow-wave depolarizations, activity in thalamic neurons receiving inhibition from the basal ganglia occurred earlier than activity in cortical neurons. Together, these findings reveal a temporally ordered pattern of output from diverse neuron subtypes in the frontal cortex and related thalamic nuclei during neocortical oscillations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.