Abstract

BackgroundDietary intake is known to be a driver of microbial community dynamics in ruminants. Beef cattle go through a finishing phase that typically includes very high concentrate ratios in their feed, with consequent effects on rumen metabolism including methane production. This longitudinal study was designed to measure dynamics of the rumen microbial community in response to the introduction of high concentrate diets fed to beef cattle during the finishing period.A cohort of 50 beef steers were fed either of two basal diet formulations consisting of approximately 10:90 or 50:50 forage:concentrate ratios respectively. Nitrate and oil rich supplements were also added either individually or in combination. Digesta samples were taken at time points over ~ 200 days during the finishing period of the cattle to measure the adaptation to the basal diet and long-term stability of the rumen microbiota.Results16S rRNA gene amplicon libraries were prepared from 313 rumen digesta samples and analysed at a depth of 20,000 sequences per library. Bray Curtis dissimilarity with analysis of molecular variance (AMOVA) revealed highly significant (p < 0.001) differences in microbiota composition between cattle fed different basal diets, largely driven by reduction of fibre degrading microbial groups and increased relative abundance of an unclassified Gammaproteobacteria OTU in the high concentrate fed animals. Conversely, the forage-based diet was significantly associated with methanogenic archaea. Within basal diet groups, addition of the nitrate and combined supplements had lesser, although still significant, impacts on microbiota dissimilarity compared to pre-treatment time points and controls. Measurements of the response and stability of the microbial community over the time course of the experiment showed continuing adaptation up to 25 days in the high concentrate groups. After this time point, however, no significant variability was detected.ConclusionsHigh concentrate diets that are typically fed to finishing beef cattle can have a significant effect on the microbial community in the rumen. Inferred metabolic activity of the different microbial communities associated with each of the respective basal diets explained differences in methane and short chain fatty acid production between cattle. Longitudinal sampling revealed that once adapted to a change in diet, the rumen microbial community remains in a relatively stable alternate state.

Highlights

  • Dietary intake is known to be a driver of microbial community dynamics in ruminants

  • 313 16S 16 Svedberg ribosomal ribonucleic acid (rRNA) gene amplicon libraries were sequenced using rumen samples collected during two feed trials carried out over consecutive years (2013 and 2014). 50 finishing beef steers (32 in 2013 and 18 in 2014) were sampled periodically at time points covering the seven-month finishing period when the animals are fed to gain weight and optimise meat and fat composition prior to slaughter

  • The high concentrate diet was associated with significantly lower (p < 0.001) CH4 emissions g per kg Dry Matter Intake (DMI)

Read more

Summary

Introduction

Beef cattle go through a finishing phase that typically includes very high concentrate ratios in their feed, with consequent effects on rumen metabolism including methane production. This longitudinal study was designed to measure dynamics of the rumen microbial community in response to the introduction of high concentrate diets fed to beef cattle during the finishing period. The different ratios of the two feed types can influence the composition of the rumen microbial community both as a response to the different carbohydrate sources in the diet [4] and as a result of the changes in interactions between microbial groups [5] In turn this alters the production rates of microbial metabolic products including short chain fatty acids (SCFA) and methane [6, 7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call