Abstract

The high spatio-temporal variability of soil moisture is the result of atmosphericforcing and redistribution processes related to terrain, soil, and vegetation characteristics.Despite this high variability, many field studies have shown that in the temporal domainsoil moisture measured at specific locations is correlated to the mean soil moisture contentover an area. Since the measurements taken by Synthetic Aperture Radar (SAR)instruments are very sensitive to soil moisture it is hypothesized that the temporally stablesoil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT AdvancedSynthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located inthe Duero basin, Spain. It is found that a time-invariant linear relationship is well suited forrelating local scale (pixel) and regional scale (50 km) backscatter. The observed linearmodel coefficients can be estimated by considering the scattering properties of the terrainand vegetation and the soil moisture scaling properties. For both linear model coefficients,the relative error between observed and modelled values is less than 5 % and thecoefficient of determination (R2) is 86 %. The results are of relevance for interpreting anddownscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT)and passive (SMOS, AMSR-E) instruments.

Highlights

  • Soil moisture is highly variable in space and time

  • Since the measurements taken by Synthetic Aperture Radar (SAR) instruments are very sensitive to soil moisture it is hypothesized that the temporally stable soil moisture patterns are reflected in the radar backscatter measurements

  • It can be seen that the temporal variation of the soil moisture values at individual stations to a large extent follows that of the mean soil moisture

Read more

Summary

Introduction

Soil moisture is highly variable in space and time. Soil moisture patterns are spatially organized phenomena, influenced by geology and topography, land cover and climate [1]. The small scale component leads to local variations in soil moisture due to soil properties, land cover attributes and local topography. This small scale component acts in the range of tens of meters spatially and in the range of a few days temporally [5]. Based on extensive in-situ data sets in Russia, Vinnikov et al [6] observed spatial correlation lengths of soil moisture in the order of 400 – 800 km caused by atmospheric forcing These findings are supported by [4] reporting spatial correlation lengths in the order of several hundred kilometres for test sites in Russia, Mongolia, China and Illinois, USA

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.