Abstract

Jacobs et al. (1995, J. Biomechanics 28, 449–459) introduced a new implementation of the remodeling theory developed by Beaupré et al. (1990, J. Orthop. Res. 8, 651–661) that eliminates certain spurious spatial instabilities of previous implementations. Due to the highly nonlinear, coupled nature of multi-dimensional adaptation simulations, direct stability analyses of this method are not practical. In this manuscript, a linearized stability analysis was used to derive an expression for the critical time step for the stability of a simple model problem. In addition to accurately predicting the temporal response of the single degree-of-freedom problem, the analysis provided a conservative estimate of the critical time step for a more realistic, multiple degree-of-freedom adaptation simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.