Abstract

Humans are capable of accurately judging their heading from optic flow during straight forward self-motion. Despite the global coherence in the optic flow field, however, visual clutter and other naturalistic conditions create constant flux on the eye. This presents a problem that must be overcome to accurately perceive heading from optic flow-the visual system must maintain sensitivity to optic flow variations that correspond with actual changes in self-motion and disregard those that do not. One solution could involve integrating optic flow over time to stabilize heading signals while suppressing transient fluctuations. Stability, however, may come at the cost of sluggishness. Here, we investigate the stability of human heading perception when subjects judge their heading after the simulated direction of self-motion changes. We found that the initial heading exerted an attractive influence on judgments of the final heading. Consistent with an evolving heading representation, bias toward the initial heading increased with the size of the heading change and as the viewing duration of the optic flow consistent with the final heading decreased. Introducing periods of sensory dropout (blackouts) later in the trial increased bias whereas an earlier one did not. Simulations of a neural model, the Competitive Dynamics Model, demonstrates that a mechanism that produces an evolving heading signal through recurrent competitive interactions largely captures the human data. Our findings characterize how the visual system balances stability in heading perception with sensitivity to change and support the hypothesis that heading perception evolves over time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call