Abstract

Sensory systems pass information about an animal's environment to higher nervous system units through sequences of action potentials. When these action potentials have essentially equivalent wave forms, all information is contained in the interspike intervals (ISIs) of the spike sequence. How do neural circuits recognize and read these ISI sequences? We address this issue of temporal sequence learning by a neuronal system utilizing spike timing dependent plasticity (STDP). We present a general architecture of neural circuitry that can perform the task of ISI recognition. The essential ingredients of this neural circuit, which we refer to as "interspike interval recognition unit" (IRU) are (i) a spike selection unit, the function of which is to selectively distribute input spikes to downstream IRU circuitry; (ii) a time-delay unit that can be tuned by STDP; and (iii) a detection unit, which is the output of the IRU and a spike from which indicates successful ISI recognition by the IRU. We present two distinct configurations for the time-delay circuit within the IRU using excitatory and inhibitory synapses, respectively, to produce a delayed output spike at time t_{0}+tau(R) in response to the input spike received at time t_{0} . R is the tunable parameter of the time-delay circuit that controls the timing of the delayed output spike. We discuss the forms of STDP rules for excitatory and inhibitory synapses, respectively, that allow for modulation of R for the IRU to perform its task of ISI recognition. We then present two specific implementations for the IRU circuitry, derived from the general architecture that can both learn the ISIs of a training sequence and then recognize the same ISI sequence when it is presented on subsequent occasions.

Highlights

  • (Fai)gSucrheem[1] atic diagram of the Interspike interval Recognition Unit (IRU) (a) Schematic diagram of the Interspike interval Recognition Unit (IRU)

  • The IRU will respond with an output spike if it is tuned to detect the input interspike interval T

  • (c) Schematic diagram of the interval Recognition Unit (IRU) constructed using a time delay unit (TDU) that can be tuned through spike timing dependent plasticity of an excitatory synapse (eSTDP)

Read more

Summary

Introduction

(Fai)gSucrheem[1] atic diagram of the Interspike interval Recognition Unit (IRU) (a) Schematic diagram of the Interspike interval Recognition Unit (IRU).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.