Abstract

The Three Gorges Reservoir (TGR) plays a crucial role in providing electricity for mega-cities across China. However, since the impoundment was completed in 2006, attention to environmental concerns has also been intensive. In order to determine the distribution, sources, and pollution status of trace elements in the water fluctuation zone of the TGR following ten years of repeated "submergence" and "exposure", we systematically collected 16 paired surface sediment samples (n = 32) covering the entire main body of the TGR in March 2018 (following 6months of submergence) and September 2018 (after 6months of exposure), and quantitatively analyzed 13 elements (e.g., Mn, Fe, V, Cr, Ni, Cu, Zn, As, Sr, Y, Zr, Ba, and Pb) using X-ray fluorescence spectrophotometry (XRF). The results showed that, except for Sr, concentrations of trace metals following submergence were generally higher than those after exposure due to the less settling of suspended solids at the faster flow velocity during the drawdown period. Assessment using enrichment factors (EFs) and a geo-accumulation index (Igeo) both characterized a relatively serious anthropogenic pollution status of metals in the upper reaches of the TGR with respect to the middle-lower reaches. Source apportionment by positive matrix factorization (PMF) analysis indicated that agricultural activities (24.8 and 24.3%, respectively) and industrial emissions (24.5 and 22.9%, respectively) were the two major sources in these two periods, followed by natural sources, domestic sewage, and ore mining. Ecological risk assessment showed that metalloid arsenic (As) could be the main potential issue of risk to aquatic organisms and human health. A new source-specific risk assessment method (pRI) combined with PMF revealed that agricultural activities could be the major source of potential ecological risk and should be prioritized as the focus of metal/metalloid risk management in the TGR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.